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Inference: Linear Combinations of Parameters

Recall that, approximately for large n

√
n(β̂0 − β0) ∼ N

(
0,E[X2]σ2

ε/σ
2
X

)
,
√
n(β̂1 − β1) ∼ N

(
0, σ2

ε/σ
2
X

)
and σβ01 = Cov(

√
n{β̂0 − β0},

√
n{β̂1 − β1}) = −E[X]

σ2
ε

σ2
X
.

These results were also often presented in the following equivalent manners

β̂0 − β0
σβ0/

√
n
∼ N(0, 1) and β̂0 ∼ N(β1, σ

2
β0/n)

β̂1 − β1
σβ1/

√
n
∼ N(0, 1) and β̂1 ∼ N(β1, σ

2
β1/n)

where σ2
β0

= E[X2]σε2/σ
2
X and σ2

β1
= σ2

ε/σ
2
X .

• Also went over how to estimate these variances
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Inference: Linear Combinations of Parameters

In the last lecture, we used these distributional results to compute objects like

Pr
(
|β̂1| > 5 | β1 = 0

)
.

which in turn were useful for hypothesis testing

H0 : β1 = 0 vs. H1 : β1 6= 0.
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Inference: Linear Combinations of Parameters

However, often we want to preform inference not just on one parameter, but on a
linear combination of parameters, i.e we want to test

H0 : β0 + 5β1 = 0 vs. H1 : β0 + 5β1 6= 0.

This is useful, for example, if we are trying to test something like

H0 : E[Y |X = 5] = 0 vs. H1 : E[Y |X = 5] 6= 0

and we view the linear regression model Y = β0 + β1X + ε as a way of
approximating the conditional mean function E[Y |X = x].
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Inference: Linear Combinations of Parameters

In order to test such a hypothesis we want to know the distribution of a linear
combination of our model parameters. That is, for λ = aβ0 + bβ1 we would like to
know the approximate distribution of

λ̂ = aβ̂0 + bβ̂1

so that we can calculate objects like Pr(|λ̂| > 0.5 | λ = 0).

Note that

√
n
(
λ̂− λ

)
=
√
n
(
aβ̂0 + bβ̂1 − aβ0 − bβ1

)
= a
√
n
(
β̂0 − β0

)
+ b
√
n
(
β̂1 − β1

)
.

and that we know the (joint) distribution of
√
n(β̂0 − β0) and

√
n(β̂1 − β1).
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Inference: Linear Combinations of Parameters

Recall from our Econ 41 Review that the sum of two jointly normal random
variables is also normally distributed and that if X and Y are random variables then

Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2abCov(X,Y ).

Using this result along with X =
√
n(β̂0 − β0) and Y =

√
n(β̂1 − β1) gives us

that, for large n:

√
n
(
λ̂− λ

)
∼ N(0, σ2

λ) =⇒ λ̂− λ
σλ/
√
n
∼ N(0, 1),

where σ2
λ = a2σ2

β0
+ b2σ2

β1
+ 2abσβ01

Manu Navjeevan (UCLA) Econ 103: Topics in Single Linear Regression 8 / 64



Inference: Linear Combinations of Parameters

Recall from our Econ 41 Review that the sum of two jointly normal random
variables is also normally distributed and that if X and Y are random variables then

Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2abCov(X,Y ).

Using this result along with X =
√
n(β̂0 − β0) and Y =

√
n(β̂1 − β1) gives us

that, for large n:

√
n
(
λ̂− λ

)
∼ N(0, σ2

λ) =⇒ λ̂− λ
σλ/
√
n
∼ N(0, 1),

where σ2
λ = a2σ2

β0
+ b2σ2

β1
+ 2abσβ01

Manu Navjeevan (UCLA) Econ 103: Topics in Single Linear Regression 8 / 64



Inference: Linear Combinations of Parameters

As a reminder, we can estimate

σ2
β0 = E[X2]

σ2
ε

σ2
X

⇐⇒ σ̂2
β0 =

1

n

n∑
i=1

X2
i ·

σ̂2
ε

σ̂2
X

σ2
β1 =

σ2
ε

σ2
X

⇐⇒ σ̂2
β1 =

σ̂2
ε

σ̂2
X

σβ01 = −E[X]
σ2
ε

σ2
X

⇐⇒ σ̂β01 = X̄
σ̂2
ε

σ̂2
X

So, we can use these to estimate σ2
λ = a2σ2

β0
+ b2σ2

β1
+ 2abσβ01 with

σ̂2
λ = a2σ̂2

β0 + b2σ̂2
β1 + 2abσ̂β01 .
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Inference: Linear Combinations of Parameters

As n→∞, σ̂2
β0
→ σ2

β0
, σ̂2

β1
→ σ2

β1
, and σ̂β01 → σβ01 by the Law of Large

Numbers. This gives us that σ̂2
λ → σ2

λ as n→∞ so that we can say
(approximately for large n):

λ̂− λ
σ̂λ/
√
n
∼ N(0, 1).

As when considering just β̂0 or β̂1, this distributional result will be useful for
hypothesis testing and creating confidence intervals.
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Inference: Linear Combinations of Parameters

Using the distributional result:

λ̂− λ
σ̂λ/
√
n
∼ N(0, 1),

we can test a null hypothesis of the form H0 : λ ≤ `, H0 : λ ≥ `, or H0 : λ = ` by
first constructing our test statistic

t∗ =
λ̂− `
σ̂λ/
√
n
.

As before, we want to reject our null hypothesis if the probability of obtaining our
test statistic (or something even further from the null hypothesis) under the null
hypothesis is less than or equal to some pre-specified value α.

• Recall that by the distributional result, under the null t∗ ∼ N(0, 1)

• The quantity σ̂λ/
√
n is called the standard error of λ̂.
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Inference: Linear Combinations of Parameters

Now that we have constructed our test statistic t∗ we can conduct our test in two
(equivalent) ways, as before

1. Construct a p-value and reject if p < α:

◦ If H0 : λ ≤ ` and H1 : λ > `:

p = Pr(Z ≥ t∗).

◦ If H0 : λ ≥ ` and H1 : λ < `:

p = Pr(Z ≤ t∗).

◦ If H0 : λ = ` and H1 : λ 6= `:

p = Pr(|Z| ≥ |t∗|) = 2 Pr(Z ≥ |t∗|).

Manu Navjeevan (UCLA) Econ 103: Topics in Single Linear Regression 12 / 64



Inference: Linear Combinations of Parameters

Now that we have constructed our test statistic t∗ we can conduct our test in two
(equivalent) ways, as before

2. Compare the t statistic to the 1− α or 1− α/2 quantile of the standard
normal distribution: z1−α or z1−α/2.

◦ If H0 : λ ≤ ` and H1 : λ > ` reject if

t∗ ≥ z1−α.

◦ If H0 : λ ≥ ` and H1 : λ < ` reject if

t∗ ≤ −z1−α.

◦ If H0 : λ = ` and H1 : λ 6= ` reject if

|t∗| ≥ z1−α/2.

As a reminder z1−α and z1−α/2 are such that

Pr(Z ≤ z1−α) = 1− α ⇐⇒ Pr(Z > z1−α) = α

Pr(Z ≤ z1−α/2) = 1− α/2 ⇐⇒ Pr(|Z| > z1−α/2) = α
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Inference: Linear Combinations of Parameters

We can also construct a 100(1− α)% confidence interval for λ in the same way as
before: by looking at the values of ` for which we would fail to reject the null
hypothesis H0 : λ = ` against a two-sided alternative H1 : λ 6= ` at level α.

This gives us a symmetric formula as before, a 100(1− α)% confidence interval for
λ is given

λ̂± z1−α/2
σ̂λ√
n
.
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Inference: Linear Combinations of Parameters

As an aside, we can start to see a pattern here. Essentially anytime we have a
distributional result like

Estimator− True Value

Standard Error of Estimator
∼ N(0, 1).

we can test a null hypothesis by constructing our test statistic

t∗ =
Estimator− Null Hypothesis Value

Standard Error of Estimate
.

and then computing a p-value or directly compating this test statistic to z1−α,
−z1−α, or z1−α/2 (depending on what alternate hypothesis we are testing).
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Inference: Linear Combinations of Parameters

We can also use this distributional result to generate 100(1− α)% confidence
intervals for the true value via

Estimator± z1−α/2 · Standard Error of Estimator.
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Linear Combinations of Parameters: Questions

Questions?
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Inference: Linear Combinations of Parameters

Example: Suppose we are arguing with our professional colleague Kyle Kuzma
about the relationship between number of mental health days taken in a month
(X) and the average number of points per game scored in the NBA (Y ). Kuzma
claims that E[Y |X = 3] = 20, we want to test this claim at level α = 0.05.

First we collect a random sample of 49 NBA players and ask them how many
mental health days they took this month and their average points per game,
{Yi, Xi}49i=1. Then, since we believe the relationship between Y and X to be
linear, we estimate the linear model

Y = β0 + β1 ·X + ε.

We can then estimate E[Y |X = 3] by β̂0 + 3β̂1.

Manu Navjeevan (UCLA) Econ 103: Topics in Single Linear Regression 17 / 64



Inference: Linear Combinations of Parameters

Example: Suppose we are arguing with our professional colleague Kyle Kuzma
about the relationship between number of mental health days taken in a month
(X) and the average number of points per game scored in the NBA (Y ). Kuzma
claims that E[Y |X = 3] = 20, we want to test this claim at level α = 0.05.

First we collect a random sample of 49 NBA players and ask them how many
mental health days they took this month and their average points per game,
{Yi, Xi}49i=1. Then, since we believe the relationship between Y and X to be
linear, we estimate the linear model

Y = β0 + β1 ·X + ε.

We can then estimate E[Y |X = 3] by β̂0 + 3β̂1.

Manu Navjeevan (UCLA) Econ 103: Topics in Single Linear Regression 17 / 64



Inference: Linear Combinations of Parameters

Example: Suppose we are arguing with our professional colleague Kyle Kuzma
about the relationship between number of mental health days taken in a month
(X) and the average number of points per game scored in the NBA (Y ). Kuzma
claims that E[Y |X = 3] = 20, we want to test this claim at level α = 0.05.

First we collect a random sample of 49 NBA players and ask them how many
mental health days they took this month and their average points per game,
{Yi, Xi}49i=1. Then, since we believe the relationship between Y and X to be
linear, we estimate the linear model

Y = β0 + β1 ·X + ε.

We can then estimate E[Y |X = 3] by β̂0 + 3β̂1.

Manu Navjeevan (UCLA) Econ 103: Topics in Single Linear Regression 17 / 64



Inference: Linear Combinations of Parameters

We can test Kuzma’s claim that E[Y |X = 3] = 20 by running the following
hypothesis test

H0 : β0 + 3β1 = 20 vs. H1 : β0 + 3β1 6= 20.

To test this claim we use our data (with n = 49) to estimate

β̂0 = 10, β̂1 = 3

σ̂2
β0 = σ̂2

β1 = σ̂β01 = 1

Using these estimates we get

λ̂ = β̂0 + 3β̂1 = 19

σ̂2
λ = σ̂2

β0 + 9σ̂2
β1 + 6σ̂β01 = 16

• Notice how much larger σ̂2
λ is than σ̂2

β0
or σ̂2

β1
.
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Inference: Linear Combinations of Parameters

Using λ̂ = 19, σ̂2
λ = 16, and n = 49 we can construct our test statistic for

H0 : λ = 20 vs H1 : λ 6= 20

t∗ =
λ̂− 20

σ̂λ/
√
n

=
19− 20√
16/
√

49
= − 1

4/7
= −7

4
= −1.75.
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Inference: Linear Combinations of Parameters

Using λ̂ = 19, σ̂2
λ = 16, and n = 49 we can construct our test statistic for

H0 : λ = 20 vs H1 : λ 6= 20

t∗ =
λ̂− 20

σ̂λ/
√
n

=
19− 20√
16/
√

49
= − 1

4/7
= −7

4
= −1.75.

We’ll run our test in two ways. First, let’s compute our p-value

p = Pr(|Z| ≥ |−1.75|) = 2 Pr(Z ≥ 1.75) = 2(1−Pr(Z ≤ 1.75)) = 2 ·0.04 = 0.08.

Since 0.08 > 0.05 we fail to reject Kuzma’s claim.
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Inference: Linear Combinations of Parameters

Using λ̂ = 19, σ̂2
λ = 16, and n = 49 we can construct our test statistic for

H0 : λ = 20 vs H1 : λ 6= 20

t∗ =
λ̂− 20

σ̂λ/
√
n

=
19− 20√
16/
√

49
= − 1

4/7
= −7

4
= −1.75.

We’ll run our test in two ways. Next, let’s compare our test statistic to z1−α/2.
Since α = 0.05 we get that z1−α/2 = z0.975 = 1.96. Because

|t∗| = 1.75 < 1.96 = z0.975

we again fail to reject Kuzma’s claim
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Inference: Linear Combinations of Parameters

Let’s use these same estimates, λ̂ = 19 and σ̂2
λ = 16, to construct a 95%

confidence interval for the true parameter λ = β0 + 3β1.

From above we have that a 95% confidence interval for λ can be constructed

λ̂± z0.975
σ̂λ√
n

= 19± 1.96
4

7
.

So that we are 95% confident that the true value of λ = β0 + 3β1 lies in the
inteval [17.88, 20.12].

• How could we use this interval to test the hypothesis H0 : λ = 20 vs
H1 : λ 6= 20 at level α = 0.05?

• What about testing this hypothesis at level α = 0.01?
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Inference: Linear Combinations of Parameters
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Linear Combinations of Parameters: Questions

Questions?
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Inference: Heteroskedasticity

Recall that in order to conduct inference and derive an asymptotic distribution for
β̂0 and β̂1 we made the following assumptions about the underlying distribution of
(Y,X):

• Random Sampling: Assume that {Yi, Xi} are independently and identically

distributed; (Yi, Xi)
i.i.d∼ (Y,X)

• Homoskedasticity: Assume that Var(ε | X = x) = σ2
ε for all possible values of

x.

• Rank Condition: There must be at least two distinct values of X that appear
in the population.

In the last set of slides we mentioned that Homoskedasticity was a strong
assumption that we will want to relax. Let’s look more into why this is the case
and how to relax the assumption.
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Inference: Heteroskedasticity

Since our linear model relates Y and X via the following equation

Y = β0 + β1X + ε

the requirement that Var(ε|X = x) = σ2
ε for all x ∈ supp(X) is implicitly requiring

that Var(Y |X = x) = Var(ε|X = x) = σ2
ε for all x ∈ supp(X).

• Intuitively this means that X has no information about the spread of Y .

• The variance of Y is the same for all values of X.

To see why homoskedasticity is a restrictive assumption, let’s turn to some
examples.

• If homoskedasticity is violated we say that the errors ε exhibit
heteroskedasticity
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Inference: Heteroskedasticity

Example 1: Let Y be food expenditure and X be household income and suppose
we want to estimate the linear model.

Y = β0 + β1X + ε.

Homoskedasticity requires that the variance of food expenditures is the same for all
levels of income.

Is this a reasonable assumption?

• Low income individuals don’t have much choice on how much to spend on
food

• High income individuals may have high variance reflecting variance in taste
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Inference: Heteroskedasticity

Example 1: Let Y be food expenditure and X be household income and suppose
we want to estimate the linear model.

Y = β0 + β1X + ε.

Homoskedasticity requires that the variance of food expenditures is the same for all
levels of income. Instead we may expect the spread of food expenditure to depend
on income
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Inference: Heteroskedasticity

Example 1: Let Y be food expenditure and X be household income and suppose
we want to estimate the linear model.

Y = β0 + β1X + ε.

After estimating β̂0 and β̂1 we can check for heteroskedasticity by plotting the
estimated residuals againt X.

In this case that looks like

• Residuals look more spread out for higher income levels, suggests
homoskedasticity is violated

• Not a formal test (using ε̂ instead of ε), but suggestive
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Inference: Heteroskedasticity

Example 2: Let Y be wages and X be years of education and consider the model

Y = β1 + β2X + ε.

In this context homoskedasticity requires that the variance in wages is the same for
all levels of education.
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Inference: Heteroskedasticity

Example 2: Let Y be wages and X be years of education and consider the model

Y = β1 + β2X + ε.

In this context homoskedasticity requires that the variance in wages is the same for
all levels of education. Is this a reasonable assumption?

• High school graduates may not have access to as many career paths

• College graduates can range from English PhDs to engineers at Google
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Inference: Heteroskedasticity

Example 2: Let Y be wages and X be years of education and consider the model

Y = β1 + β2X + ε.

In this context homoskedasticity requires that the variance in wages is the same for
all levels of education.

• Looking at the data we see that variance in wages increases increases after
high school
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Heteroskedasticity: Questions

Questions?
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Inference: Heteroskedasticity

So, suppose we look at our data and suspect homoskedasticity is violated. What
do we do now?

• Won’t need to adjust our estimator

Recall that when were deriving the asymptotic distribution of our estimator β̂1 (the
approximate distribution for n large) we applied law of large numbers and found
that approximately for large n:

√
n
(
β̂1 − β1

)
≈

1√
n

∑n
i=1 εi(Xi − µX)

σ2
X

.

We then applied the central limit theorem to 1√
n

∑n
i=1 εi(Xi − µX): approximately

for large n,

1√
n

n∑
i=1

εi(Xi − µX) ∼ N
(
0,Var(ε(X − µX))

)
.

• The only time we used homoskedasticity was to decompose
Var(ε(X − µX)) = σ2

εσ
2
X . This simplified estimation but is not necessary.
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Inference: Heteroskedasticity

Without heteroskedasticity we can use the same logic as before without
decomposing Var(ε(X − µX)) = σ2

εσ
2
X to get

√
n(β̂1 − β1) ∼ N

(
0,

Var(ε(X − µX))

(σ2
X)2

)
=⇒ β̂1 ∼ N

(
β1,

Var(ε(X − µX))

n(σ2
X)2

)
.

• Note that the variance still goes to 0 as n→∞ so that β̂1 → β1 as n→∞.

• Asymptotic variance is different now however, and will require a different
estimator.

• Using the wrong variance renders our inference useless as we will not be
accurately computing objects like

Pr(|β̂1| > 5|β1 = 0).
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Inference: Heteroskedasticity

As mentioned above, all that needs to be done to relax homoskedasticity is find a
way to estimate the asymptotic variance of β̂1:

Var(ε(X − µX))

(σ2
X)2

.

• Already know how to estimate σ2
X

• To estimate Var(ε(X − µX)) let Ŵi = ε̂i(Xi − X̄).

◦ Note that 1
n

∑n
i=1 ε̂iXi = X̄ 1

n

∑n
i=1 ε̂i = 0 by the first order conditions for β̂1

and β̂0, respectively. So Ŵi = 1
n

∑n
i=1 Ŵi = 0.

◦ Can then estimate Var(ε(X − µX)) via

1

n

n∑
i=1

Ŵ 2
i .

◦ Since ε̂i → εi and X̄ → µX , Ŵi → εi(X − µX) and so we have a consistent
estimator for Var(ε(X − µX)) by law of large numbers.

Manu Navjeevan (UCLA) Econ 103: Topics in Single Linear Regression 31 / 64



Inference: Heteroskedasticity

As mentioned above, all that needs to be done to relax homoskedasticity is find a
way to estimate the asymptotic variance of β̂1:

Var(ε(X − µX))

(σ2
X)2

.

• Already know how to estimate σ2
X

• To estimate Var(ε(X − µX)) let Ŵi = ε̂i(Xi − X̄).
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◦ Note that 1
n

∑n
i=1 ε̂iXi = X̄ 1

n

∑n
i=1 ε̂i = 0 by the first order conditions for β̂1

and β̂0, respectively. So Ŵi = 1
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Ŵ 2
i .
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Inference: Heteroskedasticity

To summarize under heteroskedasticity we have that (approximately for large n)

√
n(β̂1 − β1) ∼ N(0, σ2

β1) =⇒ β̂1 ∼ N(β1, σ
2
β1/n),

where σ2
β1

= Var(ε(X − µX))/(σ2
X)2.

• This is a different expression for σ2
β1

than under homoskedasticity and involves
a somewhat more complicated estimation procedure.

• From now on we will generally assume heteroskedasticity. It is easy to let the
computer handle estimation of the variance σ2

β1
and the standard error

σβ1/
√
n.

• Formulas for variance of β̂0 and the covariance between β̂1 and β̂0 will also be
different. Again computer can handle these easily.

• Once the heteroskedastic-consistent variances/standard errors/covariances are
computed inference and confidence intervals are computed the same as before.
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Heteroskedasticity: Questions

Questions?
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Evaluating our Model: Prediction

Let’s switch tacks a bit and turn from inference to evaluating our model. Recall
that we chose to model the relationship between Y and X by estimating the line of
best fit between Y and X:

β0, β1 = arg min
β̃0,β̃1

E
[
(Y − β̃0 − β̃1X)2

]
.

We then spent the next few days conducting inference on the parameters of
interest β0 and β1.

Now, however, let’s consider a different question. Is this even a good model?
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Evaluating our Model: Prediction

When we are answering this question we are essentially interested in how our
model does as a tool to predict Y using X.

This is a somewhat different goal than in inference when we are interested in
interpreting the parameters β0 and β1 to learn about the underlying relationship
between Y and X.

• Inference tends to be useful when thinking about policies to implement, want
to know about average effects
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Evaluating our Model: Prediction

Prediction can also be very useful though. Let’s consider some examples.

Example: How much should a pension fund keep in liquid funds?

• Fund must be able to pay all it’s obligations

• Some portion of funds are invested and returns are random. People also
retire/die at random times.

• Pension fund must forecast both obligations and returns.

Note that in these examples we are not per-se interested in interpreting the
parameters of our linear regression model. We are just interested in using our linear
regression model to predict Y using X.
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Evaluating our Model: Prediction

Suppose we had no information on X. What is the best we can do in terms of
predicting Y ?

• If we just have information on income and we are given a random name, what
should we predict their income to be?

Since we have no additional information, we will make the same prediction for all
new observations. Want to choose a value a∗ that minimizes

a∗ = arg min
a

E[(Y − a)2].

That is a∗ is “closest” to Y on average.
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Evaluating our Model: Prediction

Taking first order conditions, we see that a∗ solves

−2E[(Y − a∗)] = 0 =⇒ a∗ = E[Y ].

The best predictor of Y with no additional information is just E[Y ]!

• This is intuitive enough
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Evaluating our Model: Prediction

Now that we have information on X we have tried to use this information to
predict Y by estimating a line of best fit (linear model) between Y and X:

β0, β1 = arg min
β̃0,β̃1

E
[
(Y − β̃0 − β̃1X)2

]
.

Question: How much better is this linear model at predicting Y than just using
E[Y ]?

• Obviously cannot evaluate this directly since we don’t know β0, β1 and E[Y ]

• Instead we will see how much closer Ŷi = β̂1 + β̂1Xi is to Yi on average than
Ȳ .
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Evaluating our Model: R2 and Goodness of Fit

Let’s recall the following equalities implied by the first order conditions of our
estimating equations

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1Xi)2.

From the first order condition for β̂0:

1

n

n∑
i=1

(Yi − β̂0 − β̂1Xi) =
1

n

n∑
i=1

ε̂i = 0.

From the first order condition for β̂1:

1

n

n∑
i=1

(Yi − β̂0 − β̂1Xi)Xi =
1

n

n∑
i=1

ε̂iXi = 0.
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Evaluating our Model: R2 and Goodness of Fit

Recall that, by definition of ε̂i = Yi − β̂0 − β̂1Xi

Yi = β̂0 + β̂1Xi + ε̂i = Ŷi + ε̂i.

and that after solving for β̂0 we get

β̂0 = Ȳ − β̂1X̄ =⇒ Ȳ = β̂0 + β̂1X̄.

Using these we get that

Yi − Ȳ = (Ŷi − Ȳ ) + ε̂i

Ŷi − Ȳ = β̂1(Xi − X̄)
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Evaluating our Model: R2 and Goodness of Fit

Now let’s use these and decompose the sum:

Total variance in Y︷ ︸︸ ︷
n∑
i=1

(Yi − Ȳ )2 =
n∑
i=1

(Ŷi − Ȳ )2 +
1

n

n∑
i=1

(Ŷi − Ȳ )ε̂i +
1

n

n∑
i=1

ε̂2i

=
1

n

n∑
i=1

(Ŷi − Ȳ )2 + β̂1

=0 by FOCs︷ ︸︸ ︷
1

n

n∑
i=1

(Xi − X̄)ε̂i +
1

n

n∑
i=1

ε̂2i

=
1

n

n∑
i=1

(Ŷi − Ȳ )2︸ ︷︷ ︸
Explained by model with X

+
1

n

n∑
i=1

ε̂2i︸ ︷︷ ︸
unexplained by model
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Evaluating our Model: R2 and Goodness of Fit

Often we multiply both sides of the last equation by n and label the resulting
components:

n∑
i=1

(Yi − Ȳ )2 =

n∑
i=1

(Ŷi − Ȳ )2 +
n∑
i=1

ε̂2i .

1.
∑n
i=1(Yi − Ȳ )2: SST (Total Sum Of Squares)

◦ Captures how much total variation there is in Y .

◦ Can think of this as the sum of squared errors from just using Ȳ to predict Y .

◦ Note that this is just the sample variance of Y multiplied by n

2.
∑n
i=1(Ŷi − Ȳ )2: SSR (Sum of Squares due to Regression)

◦ Captures variation that can be attributed to variation in our predictions

◦ This is the sample variance of Ŷi multiplied by n

3.
∑n
i=1 ε̂

2
i : SSE (Sum of Squared Errors)

◦ Variation that is “left over” after using the linear model

◦ Note that this is just σ̂2
ε times n
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Evaluating our Model: R2 and Goodness of Fit

Using the decomposition

n∑
i=1

(Yi − Ȳ )2︸ ︷︷ ︸
SST

=
n∑
i=1

(Ŷi − Ȳ )2︸ ︷︷ ︸
SSR

+
n∑
i=1

ε̂2i︸ ︷︷ ︸
SSE

.

we define the coefficient of determination, R2, as

R2 =
SSR

SST
= 1− SSE

SST
.

• Intuitively R2 reports what proportion of the total variance in Y can be
explained by our linear model with X.

• If R2 = 1 then SSE = 0, indicating a perfect fit. If R2 = 0 then SSE = SST,
indicating the model does no better than the sample mean.

• R2 is generally reported when running a regression by almost any statistical
software.
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(Yi − Ȳ )2︸ ︷︷ ︸
SST

=
n∑
i=1
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• Intuitively R2 reports what proportion of the total variance in Y can be
explained by our linear model with X.

• If R2 = 1 then SSE = 0, indicating a perfect fit. If R2 = 0 then SSE = SST,
indicating the model does no better than the sample mean.

• R2 is generally reported when running a regression by almost any statistical
software.
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Evaluating our Model: R2 and Goodness of Fit

Let’s see how this looks with an example from two different datasets

• In which dataset does the regression line look closer to the data?

• Does homoskedasticity look to be violated here?
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Modeling Choices: Transforming our Data

Suppose we fit our linear model and find a low R2. There are two main reasons
this could be happening.

1. Knowing X simply does not give us much information about Y

◦ For example, suppose we were trying to predict log wages, Y , using a persons
favorite color, X.

2. The true relationship between X and Y is non-linear and we are trying to fit a
linear model.

The first problem we can’t do much to address, other than trying to collect more
right hand side variables. The second problem however we can try and address by
transforming our data.
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Modeling Choices: Transforming our Data

Let’s see an example of this. Suppose we collect our data and it looks like below

The relationship between X and Y is clearly non-linear, but we are trying to fit a
line through it. This hurts our model preformance.
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Modeling Choices: Transforming our Data

Other reasons that we may think that the relationship between Y and X is
non-linear

• Y is bounded and X has a large support.

◦ For example, suppose Y ∈ {0, 1} denotes treatment uptake and X denotes
income.

◦ A linear model of the form β̂0 + β̂1 ·X would give Ŷ > 1 for a sufficiently large
value of X.

• We believe that the derivative of Y with respect to X is not constant.

◦ Suppose Y is amount spent on groceries and X is income.

◦ We expect that as income rises people may start shopping at Whole Foods or
spending more on nicer ingredients.

◦ But this will probably level off for high levels of income. A linear model imposes

that d
dx
Ŷ (x) = d

dx
(β̂0 + β̂1x) = β̂1 for all x.
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Ŷ (x) = d

dx
(β̂0 + β̂1x) = β̂1 for all x.

Manu Navjeevan (UCLA) Econ 103: Topics in Single Linear Regression 50 / 64



Modeling Choices: Transforming our Data

Other reasons that we may think that the relationship between Y and X is
non-linear

• Y is bounded and X has a large support.

◦ For example, suppose Y ∈ {0, 1} denotes treatment uptake and X denotes
income.

◦ A linear model of the form β̂0 + β̂1 ·X would give Ŷ > 1 for a sufficiently large
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Modeling Choices: Transforing our Data

So, given that we believe the relationship between Y and X to be nonlinear, what
can we do about this?

Before we move on to something fancier, let’s try just transforming our data and
running a linear regression:

f(Y ) = β0 + β1g(X) + ε.

Common functions to be used here are ln(z),
√
z, and various polynomials; z2, z3,

etc.
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Modeling Choices: Transforming our Data

Let’s return to our data from before and see how this would work.

Instead of fitting the model Y = β0 + β1X + ε let’s try fitting the model
Y = β0 + β1 ln(X) + ε

• How is this done? Choose our estimates

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(
Yi − b0 − b1 · ln(Xi)

)2
.
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Modeling Choices: Transforming our Data

Let’s return to our data from before and see how this would work.

Instead of fitting the model Y = β0 + β1X + ε let’s try fitting the model
Y = β0 + β1 ln(X) + ε

• We can see that the blue regression line is much closer to the data on average
(R2 = 0.988 vs R2 = 0.6536)
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Modeling Choices: Transforming our Data

Let’s see another example. Suppose our data looks like the below.

First, let’s try fitting a non-transformed linear regression: Y = β0 + β1X + ε
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Modeling Choices: Transforming our Data

Let’s see another example. Suppose our data looks like the below.

We see that this line does not appear to be fitting the data so well (R2 = 0.692).
Because Y apears to grow exponentially with X, we may want to try transforming
Y .
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Modeling Choices: Transforming our Data

Let’s see another example. Suppose our data looks like the below.

The blue curve is our estimate of the model ln(Y ) = β0 + β1X + ε. This fits the
data much better and gives R2 = 0.8553. We estimate the parameters via

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(ln(Yi)− b0 − b1Xi)2.
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Modeling Choices: Transforming our Data

In all of the above, notice that from an estimation and inference perspective,
nothing much has changed. We can estimate our parameters and conduct
inference just as before, but while treating our data as {f(Yi), g(Xi)} as opposed
to {Yi, Xi}.
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Modeling Choices: Transforming our Data

Let’s see an example of this. Suppose that we want to estimate the following
model:

ln(Y ) = β0 + β1 · ln(X) + ε.

Using our data {Yi, Xi} we estimate β̂0, β̂1 via

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(ln(Yi)− b0 − b1Xi)2.

we find that, with n = 49, β̂1 = 0.5, σ2
ln(X) = 1

n

∑n
i=1(ln(Xi)− ln(X))2 = 4 and

σ̂2
ε = 1

n

∑n
i=1(ln(Yi)− β̂0 − β̂1 ln(Xi))

2 = 4.
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Modeling Choices: Transforming our Data

Assuming homoskedasticity, let’s use this information to construct a 95%
confidence interval for β1.

We use the same formula from before to calculate σ̂2
β1

=
σ̂2
ε

σ̂2
ln(X)

= 4
4

= 1.

Then, using z0.975 = 1.96, a 95% confidence interval is contructed

β̂1 ± 1.96
σ̂β1√
n

= 0.5± 1.96
1

7
= [0.22, 0.78].

• Notice that everything is the same as before

• Using this, would we reject H0 : β1 ≤ 0 against H1 : β1 > 0 at level α = 0.5?

◦ Recall that we would reject H0 : β1 = 0 against H1 : β1 6= 0 at level α = 0.5.
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Transforming our Data: Questions

Questions?
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Modeling Choices: Transforming our Data

What changes, however, is our interpretation of our parameters. Before we
interpreted:

• β0: Expected value of Y when X = 0.

• β1: Expected change in Y when X increases by one unit

In the model f(Y ) = β0 + β1g(X) + ε, we have the following interpretations of β0
and β1.

• β0: Expected value of f(Y ) when g(X) = 0

• β1g
′(x): Expected change in f(Y ) at X = x when X increases by one unit.
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Modeling Choices: Transforming our Data

Example: Suppose X represents the square footage of a house and Y represents is
final sales price (in tens of thousands of dollars). We estimate the following model

Y = β0 + β1X
2 + ε

and find that β̂0 = 50 and β̂1 = 2.

How do we interpret these parameter estimates?

• β̂0 = 50: The expected sales price of an empty lot (X2 = 0 ⇐⇒ X = 0) is
$50,000.

• β̂1 = 2: Taking derivatives gives that d
dx
Ŷ = 2β̂1X. We expect that a one

square foot increase in home size at square footage x will be associated with a
$40,000·x increase in sales price.
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Modeling Choices: Transforming our Data

A useful approximation that we use here is that a one unit increase in ln(Z) is
about a 100% increase in Z and vice versa, a 1% increase in Z is associated with a
1/100 unit increase in ln(Z).

This is useful for interpreting the parameters of various models.

• Suppose we model Y = β0 + β1 ln(X) + ε =⇒ a 1% increase in X is
associated with a β1/100 unit change in Y .

• Suppose we model ln(Y ) = β0 + β1X + ε =⇒ a 1 unit increase in X is
associated with 100 · β1% increase in Y

• Suppose we model ln(Y ) = β0 + β1 ln(X) + ε =⇒ a 1% increase is
associated with a β1% increase in Y .
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Transforming our Data: Questions

Questions?
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Modeling Choices: Linear Transformations

We may be tempted to try and improve the fit of our model by scaling Y or X up
and down. In the below let’s see what happens if we try and do so.

First, let’s see what happens if we replace Y with Ỹ = cY for some c 6= 0. Let’s
consider esimating the model Ỹ = β◦0 + β◦1X + ε

β̂◦1 =
1
n

∑n
i=1(Ỹ − ¯̃Y )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)

= c
1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)2︸ ︷︷ ︸

estimated slope parameter from Y on X

So we see that the slope parameter simply get’s scaled up or down by c: β̂◦1 = cβ̂1.

The intercept parameter also gets scaled by c:

β̂◦0 = ¯̃Y − β̂◦1X̄ = cȲ − cβ̂1X̄ = c(Ȳ − β̂1X̄) = cβ̂0.
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Modeling Choices: Linear Transformations

Now let’s see what happens if we replace X with X̃ = cX for some c 6= 0. Let’s
consider estimating the model Y = β◦0 + β◦1X̃ + ε.

β̂◦1 =
1
n

∑n
i=1(Yi − Ȳ )(X̃i − ¯̃X)

1
n

∑n
i=1(X̃i − ¯̃X)2

=
c 1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)

c2 1
n

∑n
i=1(Xi − X̄)2

=
1

c
β̂1

Here the slope parameter gets scaled by 1
c

, β̂◦1 = 1
c
β̂1.

The intercept parameter in this case doesn’t get scaled at all:

β̂◦0 = Ȳ − β̂◦1 ¯̃X = Ȳ − 1

c
β̂1(cX̄) = β0.

• Average value of Y when X = 0 is the same as the average value of Y when
cX = 0, they are the same event.
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Linear Transformations: Questions

Questions?
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